2023年10月15日 「3.3 モノの集まりを 2種類の グループに...」 を読む >> 目次に もどる


 モノ の集まりは、次の二つに類別されます──

  (1) Event (出来事、行為、取引など)

  (2) Event 以外の モノ。

 TM では、この類別 (範疇) の根拠として、関係 R を関数 f とみなして、関係の性質 (関係の対称性、関係の非対称性) を関数の項の並び (全順序、半順序) と対応して、「関係の非対称性」 をもつ モノ を全順序で並べられるとみなして Event とし、「関係の対称性」 をもつ モノ を半順序で並べられるとみなして Event の補集合 (Rerource) としています。全順序 (値の大小関係で並べられる) となる項には 「日付 (取引日)」 が特性となっています──すなわち、「日付」 が モノ の成立要件となる、ということ。その特性が成立要件ではない モノ は、Event の補集合です。

 TM の前身であるT字形ER法では、モノ の集まりを Entity と呼んで、Entity を Event と Resource の二つに分けていました──その分類は、外見上、TM と ほぼ同じです。しかし、その分類の根柢となる考えかたは、180度 違います。TM は 「関数」 を根柢に置いています、したがって 先ず Entity という語を使わないで 「項」 という語を使っています (実地の モデル 作成では、「項」 という言いかたをしないで、モノ と言っています)、そして (関係 R を関数 f とみなしているので) 分類の規準として全順序・半順序を使っていて、モノ を Event と その補集合としています (すなわち、Event の並びを 「運動 (あるいは、関係) の原因-結果 (言い替えれば、先行-後続)」 として捉えた関係主義に立っています。いっぽう、T字形ER法は実体主義的でした、そのために T字形ER法では、Resource を重視していました。しかし、TM では、Resource という語を なるべく使わないで 「Event の補集合」 としています。ただ、「関係」 文法を説明するときに、概念の正確さをたもつために、いちいち 「Event と、Event の補集合」 といえば かえって うっとうしいので、「Event と Resource」 というふうに単純に云っているだけです。Resource (Event の補集合) は、文法上では あくまで 「Event に関与する モノ」 としか扱っていない。

 「Event と、その補集合」 という分類は、事業分析・データ 設計では実地に使う モデル 技術として TM の最大の強みであると同時に純正な モデル 理論としては最大の弱点でもあります。というのは、R (Event, Resource) において、Event のなかに Event の補集合 (Resource) の個体指定子を挿入する (出来事に モノ [ 行為者 ] が関与する) ということを数学的には証明できないからです (自明のことであるとしか言いようがない)。全順序と半順序の並立は、悩ましい問題です。E.F. コッド 氏は、「関係」 (Relation) を直積集合 [ n-組、tuple ] として記述したのですが、実際の データ (名称、住所など) は全順序だけで並べることができないので、Relation の代わりに Relationship という日常語を使ってもいいと言ったのですが、同じ問題が (コッド の正規形よりも意味論的に階を一つ上げた) TM でも生じています。そして、TM は 個体指定子の 「関係」 文法 (二項関数を使った文法) なので、その問題は もっと顕著に現れています。私は、若い頃 (40歳代の頃) には、この問題を追究してみようと思ったのですが、哲学を そうとうに学習しなければならないので 私の力量では及ばないと判断して追究するのをやめました。そして、ウィトゲンシュタイン 氏の 「論理哲学論考」 の最初に宣言されている次の記述を R (Event, Resource) の説明として流用しました──

  1.1 世界は事実の寄せ集めであって、物の寄せ集めではない。
  1.13 論理的空間の中にある事実が世界である。
  2  事実とは、いくつかの事態の成立にほかならぬ。
  2.01 事態は対象(事物、物)の結合である。
  □

 




  << もどる HOME すすむ >>
  目次にもどる